ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 87]      



Задача 30345

Темы:   [ Правило произведения ]
[ Шахматные доски и шахматные фигуры ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 6,7,8,9

Сколькими способами можно поставить 8 ладей на шахматную доску так, чтобы они не били друг друга?

Прислать комментарий     Решение

Задача 35748

Темы:   [ Задачи с ограничениями ]
[ Правило произведения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 2+
Классы: 7,8

Сколько существует пятизначных чисел, получаемых из числа 12345 перестановкой цифр и у которых чётные цифры не стоят рядом?

Прислать комментарий     Решение

Задача 60398

Темы:   [ Раскладки и разбиения ]
[ Сочетания и размещения ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3-
Классы: 8,9

Сколькими способами можно разделить на команды по 6 человек для игры в волейбол группу:
а) из 12;   б) из 24 спортсменов?

Прислать комментарий     Решение

Задача 78489

Темы:   [ Раскладки и разбиения ]
[ Комбинаторика орбит ]
[ Перестановки и подстановки (прочее) ]
[ Перебор случаев ]
Сложность: 3-
Классы: 7,8

Завод выпускает погремушки в виде кольца с надетыми на него тремя красными и семью синими шариками. Сколько различных погремушек может быть выпущено? (Две погремушки считаются одинаковыми, если одна из них может быть получена из другой только передвижением шариков по кольцу и переворачиванием.)

Прислать комментарий     Решение

Задача 35561

Темы:   [ Отношение порядка ]
[ Соображения непрерывности ]
[ Перестановки и подстановки (прочее) ]
Сложность: 3+
Классы: 9,10

Некто расставил в произвольном порядке 10-томное собрание сочинений. Назовём беспорядком пару томов, для которых том с большим номером стоит левее. Для данной расстановки томов посчитано число S всех беспорядков. Какие значения может принимать S?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 87]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .