Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 275]
Найдите какие-нибудь пять натуральных чисел, разность каждых двух из которых равна наибольшему общему делителю этой пары чисел.
|
|
Сложность: 3+ Классы: 7,8,9
|
Найдите все пары целых чисел (x, y), для которых числа x³ + y и x + y³ делятся на x² + y².
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Натуральные числа a, b, c, d таковы, что наименьшее общее кратное этих
чисел равно a + b + c + d.
Докажите, что abcd делится на 3 или на 5 (или на то и другое).
Существуют ли такие натуральные числа a1 < a2 < a3 < ... < a100, что
НОД(a1, a2) > НОД(a2, a3) > ... > НОД(a99, a100)?
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Все виды растений России были занумерованы подряд числами от 2 до 20000 (числа идут без пропусков и повторений). Для каждой пары видов растений запомнили наибольший общий делитель их номеров, а сами номера были забыты (в результате сбоя компьютера). Можно ли для каждого вида растений восстановить его номер?
Страница:
<< 12 13 14 15
16 17 18 >> [Всего задач: 275]