ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Докажите, что одно из чисел равно единице или минус единице, а остальные – нули.

   Решение

Задачи

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 258]      



Задача 65160

Темы:   [ Десятичная система счисления ]
[ Примеры и контрпримеры. Конструкции ]
[ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

а) Натуральные числа x, x² и x³ начинаются с одной и той же цифры. Обязательно ли эта цифра – единица?
б) Тот же вопрос для натуральных чисел x, x², x³, ..., x2015.

Прислать комментарий     Решение

Задача 65558

Темы:   [ Средние величины ]
[ Принцип Дирихле (прочее) ]
[ Неравенство Коши ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4-
Классы: 8,9,10,11

Ваня задумал два положительных числа x и y. Он записал числа  x + y,  x – y,  xy и x/y и показал их Пете, но не сказал, какое число какой операцией получено. Докажите, что Петя сможет однозначно восстановить x и y.

Прислать комментарий     Решение

Задача 98236

Темы:   [ Уравнения в целых числах ]
[ Разложение на множители ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9

Сумма шестых степеней шести целых чисел на единицу больше, чем их ушестерённое произведение.
Докажите, что одно из чисел равно единице или минус единице, а остальные – нули.

Прислать комментарий     Решение

Задача 108623

Темы:   [ Неравенства с площадями ]
[ Отношение площадей треугольников с общим углом ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10

На сторонах AB, BC, CD и DA произвольного четырёхугольника ABCD взяты точки K, L, M и N соответственно. Обозначим через S1, S2, S3 и S4 площади треугольников AKN, BKL, CLM и DMN соответственно. Докажите, что  

Прислать комментарий     Решение

Задача 108624

Темы:   [ Неравенства с площадями ]
[ Отношение площадей треугольников с общим углом ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 8,9,10

На сторонах AB, BC и CA произвольного треугольника ABC взяты точки C1, A1 и B1 соответственно. Обозначим через S1, S2 и S3 площади треугольников AB1C1, BA1C1, CA1B1 соответственно. Докажите, что  

Прислать комментарий     Решение

Страница: << 37 38 39 40 41 42 43 >> [Всего задач: 258]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .