ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Материалы по этой теме:
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

По шоссе мимо наблюдателя проехали "Москвич", "Запорожец" и двигавшаяся им навстречу "Нива". Известно, что когда с наблюдателем поравнялся "Москвич", то он был равноудалён от "Запорожца" и "Нивы", а когда с наблюдателем поравнялась "Нива", то она была равноудалена от "Москвича" и "Запорожца". Докажите, что "Запорожец" в момент проезда мимо наблюдателя был равноудалён от "Нивы" и "Москвича". (Скорости автомашин считаем постоянными. В рассматриваемые моменты равноудалённые машины находились по разные стороны от наблюдателя.)

Вниз   Решение


Несколько последовательных натуральных чисел выписали в строку в таком порядке, что сумма каждых трёх подряд идущих чисел делится на самое левое число этой тройки. Какое максимальное количество чисел могло быть выписано, если последнее число строки нёчётно?

Вверх   Решение

Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 629]      



Задача 97951

Темы:   [ Четность и нечетность ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 8,9

Автор: Фольклор

Рассматриваются всевозможные пары  (a, b)  натуральных чисел, где  a < b.  Некоторые пары объявляются чёрными, остальные – белыми.
Можно ли это сделать так, чтобы для любых натуральных a и d среди пар  (a, a + d),  (a, a + 2d),  (a + d, a + 2d)  встречались и чёрные, и белые?

Прислать комментарий     Решение

Задача 98315

Темы:   [ Четность и нечетность ]
[ Степень вершины ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

а) Может ли случиться, что в компании из 10 девочек и 9 мальчиков все девочки знакомы с разным числом мальчиков, а все мальчики – с одним и тем же числом девочек?
б) А если девочек 11, а мальчиков 10?

Прислать комментарий     Решение

Задача 98454

Темы:   [ Четность и нечетность ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9

Несколько последовательных натуральных чисел выписали в строку в таком порядке, что сумма каждых трёх подряд идущих чисел делится на самое левое число этой тройки. Какое максимальное количество чисел могло быть выписано, если последнее число строки нёчётно?

Прислать комментарий     Решение

Задача 104019

Темы:   [ Четность и нечетность ]
[ Прямоугольные треугольники (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
[ Вспомогательная площадь. Площадь помогает решить задачу ]
Сложность: 3+
Классы: 7,8,9,10

На день рождения Олегу подарили набор равных треугольников со сторонами 3, 4 и 5 см. Олег взял все эти треугольники и сложил из них квадрат. Докажите, что треугольников было чётное количество.

Прислать комментарий     Решение

Задача 110223

Темы:   [ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
Сложность: 3+
Классы: 7,8,9

На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 629]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .