ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На доске размером 15×15 клеток расставили 15 ладей, не бьющих друг друга. Затем каждую ладью передвинули ходом коня.
Докажите, что теперь какие-то две ладьи будут бить друг друга.

   Решение

Задачи

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 199]      



Задача 97895

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Целочисленные решетки (прочее) ]
[ Инварианты ]
Сложность: 4-
Классы: 7,8,9

Улицы города расположены в трёх направлениях, так что все кварталы – равные между собой равносторонние треугольники. Правила уличного движения таковы, что через перекресток можно проехать либо прямо, либо повернув влево или вправо на 120° в ближайшую улицу. Поворачивать разрешается только на перекрёстках. Две машины выехали друг за другом из одной точки в одном направлении и едут с одинаковой скоростью, придерживаясь этих правил. Может ли случиться, что через некоторое время они на какой-то улице (не на перекрёстке) встретятся?

Прислать комментарий     Решение

Задача 98147

Темы:   [ Числовые таблицы и их свойства ]
[ Шахматная раскраска ]
[ Инварианты ]
[ Теория алгоритмов (прочее) ]
Сложность: 4-
Классы: 8,9,10

В таблице  n×n  разрешается добавить ко всем числам любого несамопересекающегося замкнутого маршрута ладьи по 1. В первоначальной таблице по диагонали стояли единицы, а остальные были нули. Можно ли с помощью нескольких разрешённых преобразований добиться того, что все числа в таблице станут равны? (Считается, что ладья побывала во всех клетках таблицы, через которые проходит её путь.)

Прислать комментарий     Решение

Задача 98173

Темы:   [ Системы точек ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 7,8,9,10

На отрезке  [a, b]  отмечено несколько синих и красных точек. Две точки одного цвета, между которыми нет отмеченных точек, разрешается стереть. Разрешается также отметить две точки одного цвета, красные или синие, так, чтобы между ними не было других отмеченных точек. Первоначально было отмечено две точки: a – синяя и b – красная. Можно ли сделать несколько разрешенных пребразований так, чтобы в результате было опять две отмеченные точки: a – красная и b – синяя?

Прислать комментарий     Решение

Задача 98512

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 10,11

На доске размером 15×15 клеток расставили 15 ладей, не бьющих друг друга. Затем каждую ладью передвинули ходом коня.
Докажите, что теперь какие-то две ладьи будут бить друг друга.

Прислать комментарий     Решение

Задача 98560

Темы:   [ Взвешивания ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9

а) Есть 128 монет двух различных весов, монет каждого веса поровну. Как на чашечных весах без гирь гарантированно найти две монеты разного веса не более чем за семь взвешиваний?
б) Есть восемь монет двух различных весов, монет каждого веса поровну. Как на чашечных весах без гирь гарантированно найти две монеты разного веса за два взвешивания?

Прислать комментарий     Решение

Страница: << 31 32 33 34 35 36 37 >> [Всего задач: 199]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .