ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Материалы по этой теме:
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи В школе (где училось больше 5 учеников) подвели итоги учебного года. Выяснилось, что в каждом множестве из пяти и более учеников не менее 80% двоек, полученных этими учениками в течение года, поставлены не более чем 20% процентам учеников из этого множества. Докажите, что по крайней мере три четверти всех двоек, поставленных в школе, получил один ученик. Решение |
Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 1110]
На доске размером 15×15 клеток расставили 15 ладей, не бьющих друг друга.
Затем каждую ладью передвинули ходом коня.
Двое играют на доске 3×100 клеток: кладут по очереди на свободные клетки доминошки 1×2. Первый игрок кладёт доминошки, направленные вдоль доски, второй – в поперечном направлении. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу (как бы ни играл его противник), и как ему следует играть?
В школе (где училось больше 5 учеников) подвели итоги учебного года. Выяснилось, что в каждом множестве из пяти и более учеников не менее 80% двоек, полученных этими учениками в течение года, поставлены не более чем 20% процентам учеников из этого множества. Докажите, что по крайней мере три четверти всех двоек, поставленных в школе, получил один ученик.
По прямой в одном направлении на некотором расстоянии друг от друга движутся пять одинаковых шариков, а навстречу им движутся пять других таких же шариков. Скорости всех шариков одинаковы. При столкновении любых двух шариков они разлетаются в противоположные стороны с той же скоростью, с какой двигались до столкновения. Сколько всего столкновений произойдёт между шариками?
В каждой клетке таблицы (n–2)×n (n > 2) записано целое число от 1 до n, причём в каждой строке все числа различны и в каждом столбце все числа различны. Докажите, что эту таблицу можно дополнить до квадрата n×n, записав в каждую новую клетку какое-нибудь целое число от 1 до n так, чтобы по-прежнему в каждой строке и в каждом столбце числа были различны.
Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 1110] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|