ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Автор: Фольклор

По прямой в одном направлении на некотором расстоянии друг от друга движутся пять одинаковых шариков, а навстречу им движутся пять других таких же шариков. Скорости всех шариков одинаковы. При столкновении любых двух шариков они разлетаются в противоположные стороны с той же скоростью, с какой двигались до столкновения. Сколько всего столкновений произойдёт между шариками?

   Решение

Задачи

Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 1110]      



Задача 98512

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 10,11

На доске размером 15×15 клеток расставили 15 ладей, не бьющих друг друга. Затем каждую ладью передвинули ходом коня.
Докажите, что теперь какие-то две ладьи будут бить друг друга.

Прислать комментарий     Решение

Задача 98516

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Теория игр (прочее) ]
Сложность: 4-
Классы: 9,10,11

Двое играют на доске 3×100 клеток: кладут по очереди на свободные клетки доминошки 1×2. Первый игрок кладёт доминошки, направленные вдоль доски, второй – в поперечном направлении. Проигрывает тот, кто не может сделать ход. Кто из играющих может обеспечить себе победу (как бы ни играл его противник), и как ему следует играть?

Прислать комментарий     Решение

Задача 98526

Темы:   [ Задачи на проценты и отношения ]
[ Линейные неравенства и системы неравенств ]
Сложность: 4-
Классы: 9,10,11

Автор: Вялый М.Н.

В школе (где училось больше 5 учеников) подвели итоги учебного года. Выяснилось, что в каждом множестве из пяти и более учеников не менее 80% двоек, полученных этими учениками в течение года, поставлены не более чем 20% процентам учеников из этого множества. Докажите, что по крайней мере три четверти всех двоек, поставленных в школе, получил один ученик.

Прислать комментарий     Решение

Задача 98535

Темы:   [ Задачи на движение ]
[ Симметрия помогает решить задачу ]
Сложность: 4-
Классы: 8,9,10,11

Автор: Фольклор

По прямой в одном направлении на некотором расстоянии друг от друга движутся пять одинаковых шариков, а навстречу им движутся пять других таких же шариков. Скорости всех шариков одинаковы. При столкновении любых двух шариков они разлетаются в противоположные стороны с той же скоростью, с какой двигались до столкновения. Сколько всего столкновений произойдёт между шариками?

Прислать комментарий     Решение

Задача 98544

Темы:   [ Числовые таблицы и их свойства ]
[ Ориентированные графы ]
[ Степень вершины ]
Сложность: 4-
Классы: 8,9

В каждой клетке таблицы  (n–2)×n  (n > 2)  записано целое число от 1 до n, причём в каждой строке все числа различны и в каждом столбце все числа различны. Докажите, что эту таблицу можно дополнить до квадрата n×n, записав в каждую новую клетку какое-нибудь целое число от 1 до n так, чтобы по-прежнему в каждой строке и в каждом столбце числа были различны.

Прислать комментарий     Решение

Страница: << 117 118 119 120 121 122 123 >> [Всего задач: 1110]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .