Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 499]      



Задача 79412

Темы:   [ Десятичная система счисления ]
[ Арифметика остатков (прочее) ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 8,9,10

Числа 1, 2, 3, ..., 1982 возводятся в квадрат и записываются подряд в некотором порядке.
Может ли полученное многозначное число быть полным квадратом?

Прислать комментарий     Решение

Задача 79432

Темы:   [ Десятичная система счисления ]
[ Формулы сокращенного умножения (прочее) ]
[ Арифметические действия. Числовые тождества ]
Сложность: 3+
Классы: 7,8,9

Может ли квадрат какого-либо натурального числа начинаться с 1983 девяток?

Прислать комментарий     Решение

Задача 86559

 [Делимость на 243]
Темы:   [ Десятичная система счисления ]
[ Признаки делимости на 3 и 9 ]
Сложность: 3+
Классы: 7,8,9

Докажите, что число состоящее из 243 единиц делится на 243.

Прислать комментарий     Решение

Задача 97800

Темы:   [ Десятичная система счисления ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9

Натуральные числа M и K отличаются перестановкой цифр.
Доказать, что
  а) сумма цифр числа 2M равна сумме цифр числа 2K;
  б) сумма цифр числа M/2  равна сумме цифр числа K/2  (если M и K чётны);
  в) сумма цифр числа 5M равна сумме цифр числа 5K.

Прислать комментарий     Решение

Задача 97822

Темы:   [ Десятичная система счисления ]
[ Уравнения в целых числах ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 8,9,10

Автор: Фольклор

Через P(x) обозначается произведение всех цифр натурального числа x, через S(x) – сумма цифр числа x.
Сколько решений имеет уравнение:   P(P(x)) + P(S(x)) + S(P(x)) + S(S(x)) = 1984 ?

Прислать комментарий     Решение

Страница: << 35 36 37 38 39 40 41 >> [Всего задач: 499]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .