ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 57]      



Задача 110253

Темы:   [ Четырехугольная пирамида ]
[ Построения на проекционном чертеже ]
[ Построение сечений ]
Сложность: 4
Классы: 10,11

Основание пирамиды SABCD – параллелограмм ABCD . Точка M – середина ребра CS , точка K расположена на ребре AB , причём AK:KB = 1:3 . Постройте сечение пирамиды плоскостью, проходящей через точки M и K параллельно прямой AC . В каком отношении эта плоскость делит ребра BS и AS ?
Прислать комментарий     Решение


Задача 110254

Темы:   [ Четырехугольная пирамида ]
[ Построения на проекционном чертеже ]
[ Построение сечений ]
Сложность: 4
Классы: 10,11

Основание пирамиды SABCD – параллелограмм ABCD . Точка M – середина ребра BC , точка K расположена на ребре SD , причём SK:KD = 2:1 . Постройте сечение пирамиды плоскостью, проходящей через точки M и K параллельно прямой AC . В каком отношении эта плоскость делит ребра SA и SC ?
Прислать комментарий     Решение


Задача 87273

Темы:   [ Перпендикулярность прямой и плоскости (прочее) ]
[ Построения на проекционном чертеже ]
[ Параллельность прямых и плоскостей ]
Сложность: 4
Классы: 10,11


Сфера радиуса 4 с центром в точке Q касается трех параллельных прямых в точках F, G и H. Известно, что площадь треугольника QGH равна 4$ \sqrt{2}$, а площадь треугольника FGH больше 16. Найдите угол GFH.

Прислать комментарий     Решение


Задача 110240

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Построения на проекционном чертеже ]
[ Построение сечений ]
Сложность: 3
Классы: 10,11

Через середину высоты правильной четырёхугольной пирамиды проведено сечение, перпендикулярное боковому ребру. Найдите площадь этого сечения, если боковое ребро равно 4, а угол между боковыми рёбрами, лежащими в одной грани, равен .
Прислать комментарий     Решение


Задача 110241

Темы:   [ Правильная пирамида ]
[ Двугранный угол ]
[ Построения на проекционном чертеже ]
Сложность: 3
Классы: 10,11

В правильной четырёхугольной пирамиде с боковым ребром, равным 20, угол между боковыми рёбрами, лежащими в одной грани, равен . Через точку, лежащую на одном из боковых рёбер, проведена прямая, перпендикулярная этому ребру и пересекающая высоту пирамиды. Найдите длину отрезка этой прямой, лежащего внутри пирамиды, если точка пересечения этой прямой с высотой делит высоту на две части в отношении 3:7, считая от вершины.
Прислать комментарий     Решение


Страница: << 6 7 8 9 10 11 12 >> [Всего задач: 57]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .