Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 157]
Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то
разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой
коробки так, что все цвета будут представлены. Докажите, что число способов
такого выбора есть ненулевая степень двойки.
|
|
Сложность: 4 Классы: 9,10,11
|
Игра в "супершахматы" ведётся на доске размером 100×100, и в ней участвует 20 различных фигур, каждая из которых ходит по своим правилам. Известно, что любая фигура с любого места бьет не более 20 полей (но больше о правилах ничего не сказано, например, если фигуру А передвинуть, то о том, как изменится множество битых полей мы ничего не знаем). Докажите, что можно расставить на доске все 20 фигур так, чтобы ни одна из них не била другую.
На пульте имеется несколько кнопок, с помощью которых осуществляется управление
световым табло. После нажатия любой кнопки некоторые лампочки на табло
переключаются (для каждой кнопки есть свой набор лампочек, причём наборы могут
пересекаться). Доказать, что число состояний, в которых может находиться
табло, равно некоторой степени числа 2.
|
|
Сложность: 4+ Классы: 8,9,10
|
В стране лингвистов существует n языков. Там живет m людей, каждый из которых знает ровно три языка, причём для разных людей эти наборы различны. Известно, что максимальное число людей, любые два из которых могут поговорить без посредников, равно k. Оказалось, что 11n ≤ k ≤ m/2.
Докажите, что тогда в стране найдутся хотя бы mn пар людей, которые не смогут поговорить без посредников.
|
|
Сложность: 2 Классы: 5,6,7
|
а) В магазине "Все для чая" есть 5 разных чашек и 3 разных блюдца. Сколькими способами можно купить чашку с блюдцем?
б) В магазине есть еще 4 чайные ложки. Сколькими способами можно купить комплект из чашки, блюдца и ложки?
в) В магазине по-прежнему продается 5 чашек, 3 блюдца и 4 чайные ложки. Сколькими способами можно купить два предмета с разными названиями?
Страница:
<< 9 10 11 12
13 14 15 >> [Всего задач: 157]