Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 157]
На шахматной доске 8×8 расставлено наибольшее возможное число слонов так, что никакие два слона не угрожают друг другу.
Доказать, что число всех таких расстановок есть точный квадрат.
Поезду, в котором находится m пассажиров, предстоит сделать n остановок.
а) Сколькими способами могут выйти пассажиры на этих остановках?
б) Решите ту же задачу, если учитывается лишь количество пассажиров, вышедших на каждой остановке.
Общество из n членов выбирает из своего состава одного представителя.
а) Сколькими способами может произойти открытое голосование, если каждый голосует за одного человека (быть может, и за себя)?
б) Решите ту же задачу, если голосование – тайное, то есть учитывается лишь число голосов, поданных за каждого кандидата, и не учитывается, кто за кого голосовал персонально.
|
|
Сложность: 3 Классы: 6,7,8
|
а) Найдите сумму всех трёхзначных чисел, которые можно записать с помощью цифр 1, 2, 3, 4 (цифры могут повторяться).
б) Найдите сумму всех семизначных чисел, которые можно получить всевозможными перестановками цифр 1, ..., 7.
|
|
Сложность: 3 Классы: 8,9,10
|
В столовой предложено на выбор шесть блюд. Каждый день Вася берёт некоторый набор блюд (возможно, не берет ни одного блюда), причём этот набор блюд должен быть отличен от всех наборов, которые он брал в предыдущие дни. Какое наибольшее количество дней Вася сможет питаться по таким правилам и какое количество блюд он в среднем при этом будет съедать за день?
Страница:
<< 6 7 8 9
10 11 12 >> [Всего задач: 157]