Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 87]
|
|
Сложность: 4- Классы: 8,9,10
|
Числа 1, 2, 3, ..., N записываются в строчку в таком порядке, что если
где-то (не на первом месте) записано число i, то где-то слева от него
встретится хотя бы одно из чисел i + 1 и i – 1. Сколькими способами это можно сделать?
|
|
Сложность: 4- Классы: 10,11
|
Сто номерков выложили в ряд в порядке возрастания: 00, 01, 02, 03, ..., 99.
Затем номерки переставили так, что каждый следующий номерок стал получаться
из предыдущего увеличением или уменьшением ровно одной из цифр на 1 (например, после 29 может идти 19, 39 или 28, а 30 или 20 – не может). Какое наибольшее число номерков могло остаться на своих местах?
|
|
Сложность: 4 Классы: 8,9,10
|
На книжной полке стоят 30 томов энциклопедии в некотором порядке. За одну операцию разрешается менять местами любые два соседних тома. За какое наименьшее число операций можно гарантированно выстроить все тома в правильном порядке (с первого по тридцатый слева направо) независимо от начального положения?
|
|
Сложность: 4 Классы: 9,10,11
|
a1, a2, ..., a101 – такая перестановка чисел 2, 3, ..., 102, что ak делится на k при каждом k. Найти все такие перестановки.
|
|
Сложность: 4 Классы: 9,10,11
|
Числа 1, 2, 3, ..., n записываются в некотором порядке: a1, a2, a3, ..., an. Берётся сумма S = a1/1 + a2/2 + ... + an/n. Найдите такое n, чтобы среди таких сумм (при всевозможных перестановках a1, a2, a3, ..., an) встретились все целые числа от n до n + 100.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 87]