Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 87]
|
|
Сложность: 4 Классы: 8,9,10
|
Несколько населённых пунктов соединены дорогами с городом, а между ними дорог
нет. Автомобиль отправляется из города с грузами сразу для всех населённых
пунктов. Стоимость каждой поездки равна произведению веса всех грузов в кузове на расстояние. Докажите, что если вес каждого груза численно равен расстоянию от города до пункта назначения, то общая стоимость перевозки не зависит от порядка, в котором объезжаются пункты.
|
|
Сложность: 5- Классы: 8,9,10
|
На столе лежат 365 карточек, на обратной стороне которых написаны различные числа. За один рубль Вася может выбрать три карточки и попросить Петю положить их слева направо так, чтобы числа на карточках располагались в порядке возрастания. Может ли Вася, потратив 2000 рублей, с гарантией выложить все 365 карточек на стол слева направо так, чтобы числа на них располагались в порядке возрастания?
|
|
Сложность: 5 Классы: 9,10,11
|
Шеренга состоит из N ребят попарно различного роста. Её разбили на наименьшее возможное количество групп стоящих подряд ребят, в каждой из которых ребята стоят по возрастанию роста слева направо (возможны группы из одного человека). Потом в каждой группе переставили ребят по убыванию роста слева направо. Докажите, что после N – 1 такой операции ребята будут стоять по убыванию роста слева направо.
|
|
Сложность: 5 Классы: 9,10,11
|
За круглым столом сидят n человек. Разрешается любых двух людей, сидящих
рядом, поменять местами. Какое наименьшее число таких перестановок необходимо
сделать, чтобы в результате каждые два соседа остались бы соседями, но сидели
бы в обратном порядке?
|
|
Сложность: 5 Классы: 8,9,10
|
Натуральные числа от 1 до 100 расставлены по кругу в таком порядке, что каждое число либо больше обоих соседей, либо меньше обоих соседей. Пара соседних чисел называется хорошей, если при выкидывании этой пары вышеописанное свойство сохраняется. Какое минимальное количество хороших пар может быть?
Страница:
<< 3 4 5 6
7 8 9 >> [Всего задач: 87]