Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 95]
[Теорема о рациональных корнях многочлена]
|
|
Сложность: 3+ Классы: 8,9,10
|
Докажите, что если (p, q) = 1 и p/q – рациональный корень многочлена P(x) = anxn + ... + a1x + a0 с целыми коэффициентами, то
а) a0 делится на p;
б) an делится на q.
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Назовём треугольник рациональным, если все его углы измеряются рациональным числом градусов. Назовём точку внутри треугольника рациональной, если при соединении её отрезками с вершинами мы получим три рациональных треугольника. Докажите, что внутри любого остроугольного рационального треугольника найдутся как минимум три различные рациональные точки.
|
|
Сложность: 3+ Классы: 9,10,11
|
Существует ли такое натуральное n, что
|
|
Сложность: 3+ Классы: 10,11
|
Квадратный трёхчлен f(x) = ax² + bx + c, не имеющий корней, таков, что коэффициент b рационален, а среди чисел c и f(c) ровно одно иррационально.
Может ли дискриминант трёхчлена f(x) быть рациональным?
|
|
Сложность: 3+ Классы: 9,10,11
|
а) Привести пример такого положительного a, что {a} + {1/a} = 1.
б) Может ли такое a быть рациональным числом?
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 95]