ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи Пусть a1, a2, ... – такая последовательность ненулевых чисел, что (am, an) = a(m, n) (m, n ≥ 1). Докажите, что все обобщенные биномиальные коэффициенты являются целыми числами. Решение |
Страница: << 1 2 3 4 5 >> [Всего задач: 25]
Пусть a – заданное вещественное число, n – натуральное число, n > 1.
x2 + 2ax + = - a + 0 < a < .
Найти все значения x, y и z, удовлетворяющие равенству $\sqrt{x-y+z} = \sqrt{x} - \sqrt{y} + \sqrt{z}$.
Страница: << 1 2 3 4 5 >> [Всего задач: 25] |
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|