ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 30897

Темы:   [ Иррациональные неравенства ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9

n – натуральное число. Докажите, что  

Прислать комментарий     Решение

Задача 60302

Темы:   [ Иррациональные неравенства ]
[ Суммы числовых последовательностей и ряды разностей ]
Сложность: 3+
Классы: 8,9,10

Докажите неравенство для натуральных n:  

Прислать комментарий     Решение

Задача 64900

Тема:   [ Иррациональные неравенства ]
Сложность: 3+
Классы: 10,11

Найдите наименьшее значение дроби x/y, если   .

Прислать комментарий     Решение

Задача 65122

Темы:   [ Иррациональные неравенства ]
[ Неравенство Коши ]
Сложность: 4-
Классы: 9,10,11

Автор: Козлов П.

Положительные числа a, b, c удовлетворяют соотношению  ab + bc + ca = 1.  Докажите, что  

Прислать комментарий     Решение

Задача 73625

Темы:   [ Иррациональные неравенства ]
[ Доказательство от противного ]
Сложность: 4
Классы: 9,10,11

Если x1 < x2 < x3 < ... < xn натуральные числа, то сумма n – 1 дробей, k-я из которых, где k < n, равна отношению квадратного корня из разности xk+1 - xk к числу xk+1, меньше суммы чисел 1, 1/2, 1/3, ..., 1/n2. Докажите это.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
     
Пишите нам
Rambler's Top100

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .