Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 61]
|
|
Сложность: 4+ Классы: 9,10,11
|
Дана таблица n×n клеток и такие натуральные числа k и m > k, что m и n – k взаимно просты. Таблица заполняется следующим образом: пусть в некоторой строчке записаны числа a1, ..., ak, ak+1, ..., am, am+1, ..., an. Тогда в следующей строчке записываются те же числа, но в таком порядке: am+1, ..., an, ak+1, ..., am, a1, ..., ak. В первую строчку записываются (по порядку) числа 1, 2, ..., n. Доказать, что после заполнения таблицы в каждом столбце будут написаны все числа от 1 до n.
|
|
Сложность: 5- Классы: 9,10,11
|
При дворе короля Артура собрались 2n рыцарей, причём каждый из них имеет
среди присутствующих не более n – 1 врага.
Доказать, что Мерлин, советник Артура, может так рассадить рыцарей за круглым столом, что ни один из них не будет сидеть рядом со своим врагом.
|
|
Сложность: 5- Классы: 9,10,11
|
В королевстве N городов, некоторые пары которых соединены непересекающимися дорогами с двусторонним движением (города из такой пары называются соседними). При этом известно, что из каждого города можно доехать до любого другого, но невозможно, выехав из некоторого города и двигаясь по различным дорогам, вернуться в исходный город.
Однажды Король провел такую реформу: каждый из N мэров городов стал снова мэром одного из N городов, но, возможно, не того города, в котором он работал до реформы. Оказалось, что каждые два мэра, работавшие в соседних городах до реформы, оказались в соседних городах и после реформы. Докажите, что либо найдётся город, в котором мэр после реформы не поменялся, либо найдётся пара соседних городов, обменявшихся мэрами.
|
|
Сложность: 2+ Классы: 9,10
|
Сколькими способами можно составить расписание первого тура чемпионата России по футболу, в котором играет 16 команд? (Является важным, кто хозяин поля.)
Три бегуна А, Б, В несколько раз совершили забег на 100 метров. При подведении результатов оказалось, что А обогнал Б больше, чем в половине забегов, Б обогнал В больше, чем в половине забегов, а В обогнал А больше, чем в половине забегов.
Могло ли это случиться?
Страница: << 7 8 9 10 11 12 13 >> [Всего задач: 61]