Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 76]
|
|
Сложность: 3+ Классы: 10,11
|
Дано 100 чисел a1, a2, a3, ..., a100, удовлетворяющих условиям:
a1 – 4a2 + 3a3 ≥ 0,
a2 – 4a3 + 3a4 ≥ 0,
a3 – 4a4 + 3a5 ≥ 0,
...,
a99 – 4a100 + 3a1 ≥ 0,
a100 – 4a1 + 3a2 ≥ 0.
Известно, что a1 = 1, определить a2, a3, ..., a100.
|
|
Сложность: 3+ Классы: 9,10
|
Выбрать 100 чисел, удовлетворяющих условиям x1 = 1, 0 ≤ x1 ≤ 2x1, 0 ≤ x3 ≤ 2x2, ..., 0 ≤ x99 ≤ 2x98, 0 ≤ x100 ≤ 2x99, так, чтобы выражение
x1 – x2 + x3 – x4 + ... + x99 – x100 было максимально.
Можно ли записать в строку 50 чисел так, чтобы сумма любых 17 последовательных
чисел была положительна, а сумма любых 10 последовательных чисел была
отрицательна?
Имеется набор натуральных чисел, причём сумма любых семи из них меньше 15, а
сумма всех чисел из набора равна 100.
Какое наименьшее количество чисел может быть в наборе?
Докажите, что ни для каких чисел x, y, t не могут одновременно выполняться три неравенства: |x| < |y − t|, |y| < |t − x|, |t| < |x − y|.
Страница:
<< 2 3 4 5
6 7 8 >> [Всего задач: 76]