Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 110]
|
|
Сложность: 4- Классы: 9,10,11
|
Итоговый балл в фигурном катании выставляется следующим образом. Бригада судей состоит из десяти человек. Каждый из судей ставит спортсмену свою оценку за выступление. После этого из десяти полученных оценок случайным образом выбираются семь. Сумма этих семи оценок и есть итоговый балл. Места между спортсменами распределяются в соответствии с набранным итоговым баллом: чем выше балл, тем лучше результат. В чемпионате участвовало 6 спортсменов. Могло ли оказаться так, что:
а) спортсмен, у которого сумма всех 10 оценок максимальна, занял последнее место?
б) спортсмен, у которого сумма всех 10 оценок максимальна, занял последнее место, а спортсмен, у которого сумма всех 10 оценок минимальна, занял первое место?
|
|
Сложность: 4- Классы: 6,7,8
|
Среди актеров театра Карабаса Барабаса прошёл шахматный турнир. Каждый участник сыграл с каждым из остальных ровно один раз. За победу давали один сольдо, за ничью – полсольдо, за поражение не давалось ничего. Оказалось, что среди каждых трёх участников найдётся шахматист, заработавший в партиях с двумя другими ровно 1,5 сольдо. Какое наибольшее количество актеров могло участвовать в таком турнире?
|
|
Сложность: 4- Классы: 7,8,9
|
Восемь волейбольных команд провели турнир в один круг (каждая команда сыграла
с каждой один раз). Доказать, что можно выделить такие четыре команды A, B, C и D, что A выиграла у B, C и D; B выиграла у C и D, C выиграла у D.
В однокруговом турнире участвовали 15 команд.
а) Докажите, что хотя бы в одной игре встретились команды, которые
перед этой игрой участвовали в сумме в нечётном числе игр этого турнира.
б) Могла ли такая игра быть единственной?
Есть девять борцов разной силы. В поединке любых двух из них всегда побеждает сильнейший. Можно ли разбить их на три команды по три борца так, чтобы во встречах команд по системе "каждый с каждым" первая команда по числу побед одержала верх над второй, вторая – над третьей, а третья – над первой?
Страница:
<< 10 11 12 13
14 15 16 >> [Всего задач: 110]