Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 110]
|
|
Сложность: 4- Классы: 10,11
|
В футбольном чемпионате участвуют 18 команд. На сегодняшний день проведено 8 туров (в каждом туре все команды разбиваются на пары и в каждой паре команды играют друг с другом, причём пары не повторяются). Верно ли, что найдутся три команды, которые не сыграли ни одного матча между собой?
|
|
Сложность: 4- Классы: 5,6,7
|
Команды провели турнир по футболу в один круг (каждая с каждой сыграла один раз, победа – 3 очка, ничья – 1, поражение – 0). Оказалось, что единоличный победитель набрал менее 50% от количества очков, возможного для одного участника. Какое наименьшее количество команд могло участвовать в турнире?
В турнире по гандболу участвуют 20 команд.
После того как каждая
команда сыграла с каждой по разу, оказалось, что количество очков у
всех команд разное.
После того как каждая команда сыграла с каждой по
второму разу, количество очков у всех команд стало одинаковым.
В гандболе за победу команда получает 2 очка, за ничью 1 очко, за
поражение — 0 очков.
Верно ли, что найдутся две команды, по разу
выигравшие друг у друга?
В волейбольном турнире каждые две команды сыграли по одному матчу.
а) Докажите, что если для каждых двух команд найдётся третья, которая выиграла у этих двух, то число команд не меньше семи.
б) Постройте пример такого турнира семи команд.
в) Докажите, что если для любых трёх команд найдётся такая, которая
выиграла у этих трёх, то число команд не меньше 15.
|
|
Сложность: 4 Классы: 10,11
|
В футбольном турнире в один круг участвовало 28 команд. По окончании турнира
оказалось, что более ¾ всех игр закончилось вничью.
Докажите, что какие-то две команды набрали поровну очков.
Страница:
<< 11 12 13 14
15 16 17 >> [Всего задач: 110]