Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 6 задач
Версия для печати
Убрать все задачи

Докажите, что диаметр окружности, перпендикулярный хорде, делит эту хорду пополам.

Вниз   Решение


Докажите, что биссектриса треугольника делит его сторону на отрезки, пропорциональные двум другим сторонам.

ВверхВниз   Решение


На плоскости даны точки A и B . Доказать, что множество всех точек M , удалённых от A в 3 раза больше, чем от B , есть окружность.

ВверхВниз   Решение


При каких натуральных a существуют такие натуральные числа x и y, что (x + y)2 + 3x + y = 2a?

ВверхВниз   Решение


Какое максимальное число дамок можно поставить на чёрных полях шахматной доски размером 8×8 так, чтобы каждую дамку била хотя бы одна из остальных?

ВверхВниз   Решение


Угол между радиусами OA и OB окружности равен 60°. Найдите хорду AB, если радиус окружности равен R.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]      



Задача 35582

Темы:   [ Простые числа и их свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3-
Классы: 7,8,9

Какое наименьшее натуральное число не является делителем 50!?

Прислать комментарий     Решение

Задача 60467

Темы:   [ Простые числа и их свойства ]
[ Арифметическая прогрессия ]
Сложность: 3-
Классы: 8,9

Существуют ли арифметическая прогрессия, состоящая лишь из простых чисел?

Прислать комментарий     Решение

Задача 60469

Темы:   [ Простые числа и их свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 8,9

Докажите, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов.

Прислать комментарий     Решение

Задача 60470

Темы:   [ Простые числа и их свойства ]
[ Делимость чисел. Общие свойства ]
[ Арифметика остатков (прочее) ]
Сложность: 3-
Классы: 7,8,9

Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.

Прислать комментарий     Решение

Задача 79296

Темы:   [ Простые числа и их свойства ]
[ Четность и нечетность ]
Сложность: 3-
Классы: 7,8,9

Натуральные числа a, b, c таковы, что числа  p = bc + a,  q = ab + c,  r = ca + b  простые. Доказать, что два из чисел p, q, r равны между собой.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .