ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи В параллелограмме ABCD сторона AB = 420. На стороне BC взята точка E так, что BE : EC = 5: 7, и проведена прямая DE, пересекающая продолжение AB в точке F. Найдите BF. Найдите все простые числа вида PP + 1 (P – натуральное), содержащие не более 19 цифр. На стороне AC треугольника ABC отмечены точки D и E, а на отрезке BE – точка F. Оказалось, что
AC = BD, 2∠ACF = ∠ADB, 2∠CAF = ∠CDB. Точка P , лежащая на большей из двух дуг AB окружности, соединена с серединой M меньшей дуги AB . Хорды PL и PM пересекают хорду AB соответственно в её середине K и в некоторой точке N . Сравните отрезки KL и MN . В треугольнике ABC угол A в 2 раза больше угла B, AL – биссектриса треугольника. На луче AL отложен отрезок AK, равный CL. |
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]
Какое наименьшее натуральное число не является делителем 50!?
Существуют ли арифметическая прогрессия, состоящая лишь из простых чисел?
Докажите, что 3, 5 и 7 являются единственной тройкой простых чисел-близнецов.
Найдите все простые числа, которые равны сумме двух простых чисел и разности двух простых чисел.
Натуральные числа a, b, c таковы, что числа p = bc + a, q = ab + c, r = ca + b простые. Доказать, что два из чисел p, q, r равны между собой.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 201]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке