|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Два ребра прямоугольного параллелепипеда, выходящие из одной вершины, равны 1, 2. Площадь поверхности параллелепипеда равна 16. Найдите его диагональ. Площадь большого круга шара равна 3. Найдите площадь поверхности шара. |
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 201]
Пусть n > 2. Докажите, что между n и n! есть по крайней мере одно простое число.
Докажите, что множество простых чисел вида p = 4k + 3 бесконечно.
Докажите, что множество простых чисел вида p = 6k + 5 бесконечно.
Пусть {pn} – последовательность простых чисел (p1 = 2, p2 = 3, p3 = 5, ...).
Докажите неравенство pn+1 < p1p2...pn (pk – k-е простое число).
Страница: << 8 9 10 11 12 13 14 >> [Всего задач: 201] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|