Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 407]
|
|
Сложность: 3- Классы: 5,6,7
|
Сумма трёх различных наименьших делителей некоторого числа A
равна 8. На сколько нулей может оканчиваться число A?
|
|
Сложность: 3- Классы: 6,7,8
|
Сумасшедший кассир меняет любые две монеты на любые три по вашему выбору, а любые три – на любые две. Сможет ли Петя обменять у него 100 монет достоинством 1 рубль на 100 монет достоинством 1 форинт, отдав ему при обмене ровно 2001 монету?
Саша пишет на доске последовательность натуральных чисел. Первое число N > 1 написано заранее. Новые натуральные числа он получает так: вычитает из последнего записанного числа или прибавляет к нему любой его делитель, больший 1. При любом ли натуральном N > 1 Саша сможет написать на доске в какой-то момент число 2011?
|
|
Сложность: 3 Классы: 6,7,8
|
Докажите, что число, имеющее нечётное число делителей, является точным квадратом.
|
|
Сложность: 3 Классы: 6,7,8
|
а) Назовите 10 первых натуральных чисел, имеющих нечётное число делителей (в число делителей включается единица и само число).
б) Попробуйте сформулировать и доказать правило, позволяющее найти следующие такие числа.
Страница:
<< 4 5 6 7
8 9 10 >> [Всего задач: 407]