ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Два мудреца играют в следующую игру. Выписаны числа 0, 1, 2,..., 1024. Первый мудрец зачёркивает 512 чисел (по своему выбору), второй зачёркивает 256 из оставшихся, затем снова первый зачёркивает 128 чисел и т.д. На десятом шаге второй мудрец зачёркивает одно число; остаются два числа. После этого второй мудрец платит первому разницу между этими числами. Как выгоднее играть первому мудрецу? Как второму? Сколько уплатит второй мудрец первому, если оба будут играть наилучшим образом? (Ср. с задачей 78710 и с задачей 78716.)

   Решение

Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



Задача 61048

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3
Классы: 8,9,10

Решите уравнение  

Прислать комментарий     Решение

Задача 61049

Темы:   [ Интерполяционный многочлен Лагранжа ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3
Классы: 8,9,10

Докажите тождество  

Прислать комментарий     Решение

Задача 107784

Темы:   [ Тождественные преобразования (тригонометрия) ]
[ Многочлен n-й степени имеет не более n корней ]
[ Тригонометрический круг ]
Сложность: 3
Классы: 10,11

Известно число sin α. Какое наибольшее число значений может принимать  а) sin α/2,   б) sin α/3?
Прислать комментарий     Решение


Задача 61058

Темы:   [ Квадратный трехчлен (прочее) ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3+
Классы: 8,9,10

На плоскости расположено 100 точек. Известно, что через каждые четыре из них проходит график некоторого квадратного трёхчлена. Докажите, что все 100 точек лежат на графике одного квадратного трёхчлена.

Прислать комментарий     Решение

Задача 61060

Темы:   [ Системы линейных уравнений ]
[ Многочлен n-й степени имеет не более n корней ]
Сложность: 3+
Классы: 8,9,10

Пусть a, b и c – три различных числа. Докажите, что из равенств
   
следует, что x = y = z = 0.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 30]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .