Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 2440]
При обычной игре в домино кости выкладываются так, чтобы разность между числами
на соседних костях равнялась 0.
Можно ли выложить все 28 костей в замкнутую цепь так, чтобы все эти разности равнялись ±1?
|
|
Сложность: 2+ Классы: 6,7,8
|
Найти хотя бы одно целочисленное решение уравнения a²b² + a² + b² + 1 = 2005.
Доказать, что при любых натуральных m и n число 10m + 1 не делится на 10n − 1.
Доказать, что числа 27x + 4 и 18x + 3 взаимно просты при любом натуральном x.
|
|
Сложность: 2+ Классы: 5,6,7,8
|
Дядька Черномор написал на листке бумаги число 20. 33 богатыря передают листок друг другу, и каждый или прибавляет к числу, или отнимает от него единицу. Может ли в результате получиться число 10?
Страница:
<< 23 24 25 26
27 28 29 >> [Всего задач: 2440]