Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 630]
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
По кругу стоят буквы A и B, всего 41 буква. Можно заменять ABA на B и наоборот, а также BAB на A и наоборот.
Верно ли, что из любого начального расположения можно получить такими операциями круг, на котором стоит ровно одна буква?
|
|
|
Сложность: 3+ Классы: 9,10,11
|
В одной из клеток шахматной доски 10×10 стоит ладья. Переходя каждым
ходом в соседнюю по стороне клетку, она обошла все клетки доски, побывав в каждой ровно по одному разу. Докажите, что для каждой главной диагонали доски верно следующее утверждение: в маршруте ладьи есть два последовательных хода, первым из которых она ушла с этой диагонали, а следующим – вернулась на неё. (Главная диагональ ведёт из угла доски в противоположный угол.)
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
Замкнутая, возможно, самопересекающаяся ломаная симметрична относительно не лежащей на ней точки $O$. Докажите, что число оборотов ломаной вокруг $O$ нечётно. (
Числом оборотов вокруг $O$ называется сумма ориентированных углов $$\angle A_1OA_2+\angle A_2OA_3+\ldots+\angle A_{n-1}OA_n+\angle A_nOA_1,$$ делённая на $2\pi$.)
|
|
|
Сложность: 3+ Классы: 7,8,9
|
Рассмотрим все натуральные числа, в десятичной записи которых участвуют лишь цифры 1 и 0. Разбейте эти числа на два непересекающихся подмножества так, чтобы сумма любых двух различных чисел из одного и того же подмножества содержала в своей десятичной записи не менее двух единиц.
|
|
|
Сложность: 3+ Классы: 7,8,9
|
2m-значное число назовём справедливым, если его чётные разряды содержат столько же чётных цифр, сколько и нечётные. Докажите, что в любом (2m+1)-значном числе можно вычеркнуть одну из цифр так, чтобы полученное 2m-значное число было справедливым. Пример для числа 12345 показан на рисунке.
Страница:
<< 57 58 59 60
61 62 63 >> [Всего задач: 630]