Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 187]
|
|
Сложность: 5- Классы: 8,9,10
|
На столе лежат три кучки спичек. В первой кучке находится 100 спичек, во второй – 200, а в третьей – 300. Двое играют в такую игру. Ходят по очереди, за один ход игрок должен убрать одну из кучек, а любую из оставшихся разделить на две непустые части. Проигравшим считается тот, кто не может сделать ход. Кто выиграет при правильной игре: начинающий или его партнер?
|
|
Сложность: 5- Классы: 9,10,11
|
Существует ли такое натуральное число n > 101000, не делящееся на 10, что в его десятичной записи можно
переставить две различные ненулевые цифры так, чтобы множество его простых
делителей не изменилось?
|
|
Сложность: 5- Классы: 10,11
|
Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
а) 17 номеров;
б) менее 16 номеров?
|
|
Сложность: 5 Классы: 10,11
|
а) Доказать, что сумма цифр числа K не более чем в 8 раз превосходит сумму цифр числа 8K.
б) Для каких натуральных k существует такое положительное число ck, что ≥ ck для всех натуральных N? Найдите наибольшее подходящее значение ck.
|
|
Сложность: 5 Классы: 8,9,10
|
Найдите все такие натуральные n, что при некоторых взаимно простых x и y и натуральном k > 1, выполняется равенство 3n = xk + yk.
Страница:
<< 26 27 28 29
30 31 32 >> [Всего задач: 187]