ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 187]      



Задача 109567

Темы:   [ Выигрышные и проигрышные позиции ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 5-
Классы: 8,9,10

Автор: Кохась М.

На столе лежат три кучки спичек. В первой кучке находится 100 спичек, во второй – 200, а в третьей – 300. Двое играют в такую игру. Ходят по очереди, за один ход игрок должен убрать одну из кучек, а любую из оставшихся разделить на две непустые части. Проигравшим считается тот, кто не может сделать ход. Кто выиграет при правильной игре: начинающий или его партнер?

Прислать комментарий     Решение

Задача 109807

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 5-
Классы: 9,10,11

Существует ли такое натуральное число  n > 101000,  не делящееся на 10, что в его десятичной записи можно переставить две различные ненулевые цифры так, чтобы множество его простых делителей не изменилось?

Прислать комментарий     Решение

Задача 116575

Темы:   [ Делимость чисел. Общие свойства ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Теория алгоритмов (прочее) ]
[ Двоичная система счисления ]
[ Произведения и факториалы ]
Сложность: 5-
Классы: 10,11

Саша написал по кругу в произвольном порядке не более ста различных натуральных чисел, а Дима пытается угадать их количество. Для этого Дима сообщает Саше в некотором порядке несколько номеров, а затем Саша сообщает Диме в том же порядке, какие числа стоят под указанными Димой номерами, если считать числа по часовой стрелке, начиная с одного и того же числа. Сможет ли Дима заведомо угадать количество написанных Сашей чисел, сообщив
  а) 17 номеров;
  б) менее 16 номеров?

Прислать комментарий     Решение

Задача 78791

Темы:   [ Десятичная система счисления ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Деление с остатком ]
[ Принцип Дирихле (прочее) ]
Сложность: 5
Классы: 10,11

а) Доказать, что сумма цифр числа K не более чем в 8 раз превосходит сумму цифр числа 8K.
б) Для каких натуральных k существует такое положительное число ck, что  ck  для всех натуральных N? Найдите наибольшее подходящее значение ck.

Прислать комментарий     Решение

Задача 109625

Темы:   [ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ НОД и НОК. Взаимная простота ]
Сложность: 5
Классы: 8,9,10

Найдите все такие натуральные n, что при некоторых взаимно простых x и y и натуральном  k > 1,  выполняется равенство  3n = xk + yk.

Прислать комментарий     Решение

Страница: << 26 27 28 29 30 31 32 >> [Всего задач: 187]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .