ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 133]      



Задача 73601

Темы:   [ Суммы числовых последовательностей и ряды разностей ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 7,8,9

Вот несколько примеров, когда сумма квадратов k последовательных натуральных чисел равна сумме квадратов k – 1 следующих натуральных чисел:

32 + 42 = 52,

362 + 372 + 382 + 392 + 402 = 412 + 422 + 432 + 442,

552 + 562 + 572 + 582 + 592 + 602 = 612 + 622 + 632 + 642 + 652.

Найдите общую формулу, охватывающую все такие случаи.
Прислать комментарий     Решение


Задача 78247

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 9,10

Два отрезка натурального ряда из 1961 числа подписаны один под другим. Доказать, что каждый из них можно так переставить, что если сложить числа, стоящие одно под другим, получится снова отрезок натурального ряда.
Прислать комментарий     Решение


Задача 109932

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
Сложность: 4-
Классы: 8,9

Числа от 1 до 37 записали в строку так, что сумма любых первых нескольких чисел делится на следующее за ними число.
Какое число стоит на третьем месте, если на первом месте написано число 37, а на втором – 1?

Прислать комментарий     Решение

Задача 115352

Темы:   [ НОД и НОК. Взаимная простота ]
[ Арифметическая прогрессия ]
[ Тождественные преобразования ]
Сложность: 4-
Классы: 9,10,11

Назовём тройку натуральных чисел  (a, b, cквадратной, если они образуют арифметическую прогрессию (именно в таком порядке), число b взаимно просто с каждым из чисел a и c, а число abc является точным квадратом. Докажите, что для любой квадратной тройки найдётся другая квадратная тройка, имеющая с ней хотя бы одно общее число. (Тройка  (c, b, a)  новой тройкой не считается.)

Прислать комментарий     Решение

Задача 67202

Темы:   [ Логика и теория множеств (прочее) ]
[ Арифметическая прогрессия ]
[ Геометрическая прогрессия ]
[ Оценка + пример ]
Сложность: 4
Классы: 10,11

Какое наименьшее количество различных целых чисел нужно взять, чтобы среди них можно было выбрать как геометрическую, так и арифметическую прогрессию длины 5?
Прислать комментарий     Решение


Страница: << 16 17 18 19 20 21 22 >> [Всего задач: 133]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .