|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Версия для печати
Убрать все задачи Дан остроугольный треугольник ABC и точка P, не совпадающая с точкой пересечения его высот. Докажите, что окружности, проходящие через середины сторон треугольников PAB, PAC, PBC и ABC, а также окружность, проходящая через проекции точки P на стороны треугольника ABC, пересекаются в одной точке. |
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]
Найти все положительные решения системы уравнений
Известно, что квадратные уравнения ax² + bx + c = 0 и bx² + cx + a = 0 (a, b и c – отличные от нуля числа) имеют общий корень.
На каждой из ста карточек записано по одному числу, отличному от нуля, так, что каждое число равно квадрату суммы всех остальных.
Решите систему уравнений:
Доказать, что если уравнения с целыми коэффициентами x² + p1x + q1, x² + p2x + q2 имеют общий нецелый корень, то p1 = p2 и q1 = q2.
Страница: << 1 2 3 4 5 6 >> [Всего задач: 26] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|