ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 1006]      



Задача 60668

Темы:   [ Треугольник Паскаля и бином Ньютона ]
[ Простые числа и их свойства ]
Сложность: 3
Классы: 8,9,10

Докажите, что если p – простое число и  1 ≤ k ≤ p – 1,  то    делится на p.

Прислать комментарий     Решение

Задача 64693

Темы:   [ Теория графов (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7

Впишите в пять кружков натуральные числа так, чтобы выполнялись два условия:
  - если два кружка соединены линией, то стоящие в них числа должны отличаться ровно в два или ровно в четыре раза;
  - если два кружка не соединены линией, то отношение стоящих в них чисел не должно быть равно ни 2, ни 4.

Прислать комментарий     Решение

Задача 66005

Темы:   [ Сочетания и размещения ]
[ Принцип Дирихле (прочее) ]
Сложность: 3
Классы: 8,9,10,11

Жили-были двадцать шпионов. Каждый из них написал донос на десять своих коллег.
Докажите, что не менее, чем десять пар шпионов донесли друг на друга.

Прислать комментарий     Решение

Задача 66036

Тема:   [ Задачи с ограничениями ]
Сложность: 3
Классы: 6,7,8,9

Имеется резинка и стеклянные шарики-бусины: четыре одинаковых красных, две одинаковых синих и две одинаковых зелёных. Нужно все восемь бусин нанизать на резинку последовательно, чтобы получился браслет. Сколько различных браслетов можно составить так, чтобы бусины одного цвета не оказались рядом? (Считайте, что застёжки нет, а узелок на резинке незаметен.)

Прислать комментарий     Решение

Задача 67301

Темы:   [ Сочетания и размещения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 6,7,8,9

На урок физкультуры пришло $12$ детей, все разной силы. Учитель $10$ раз делил их на две команды по $6$ человек, каждый раз новым способом, и проводил состязание по перетягиванию каната. Могло ли оказаться так, что все $10$ раз состязание закончилось вничью (то есть суммы сил детей в командах были равны)?
Прислать комментарий     Решение


Страница: << 24 25 26 27 28 29 30 >> [Всего задач: 1006]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .