Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 502]
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В финал конкурса спектаклей к 8 Марта вышли два спектакля. В первом
играли n учеников 5 класса А, а во втором – n учеников 5 класса Б. На спектакле присутствовали 2n мам всех 2n учеников. Лучший спектакль выбирается голосованием мам. Известно, что ровно половина мам честно голосует за лучший спектакль, а другая половина в любом случае голосует за спектакль, в котором участвует её ребенок.
а) Найдите вероятность того, что лучший спектакль победит с
перевесом голосов.
б) Тот же вопрос, если в финал вышло больше двух спектаклей.
|
|
Сложность: 3+ Классы: 5,6,7
|
Мария Ивановна покупает 16 шариков для Последнего звонка. В магазине есть шарики трёх цветов: синего, красного и зелёного. Сколько существует вариантов различных покупок 16 шариков, если Мария Ивановна хочет, чтобы шарики каждого цвета составляли не менее четверти от количества всех шариков?
|
|
Сложность: 3+ Классы: 7,8,9
|
В ряд стоят 100 детей разного роста. Разрешается выбрать любых 50 детей, стоящих подряд, и переставить их между собой как угодно (остальные остаются на своих местах). Как всего за шесть таких перестановок гарантированно построить всех детей по убыванию роста слева направо?
|
|
Сложность: 3+ Классы: 7,8,9
|
Петя собирается все 90 дней каникул провести в деревне и при этом каждый второй день (то есть через день) ходить купаться на озеро, каждый третий – ездить в магазин за продуктами, а каждый пятый день – решать задачи по математике. (В первый день Петя сделал и первое, и второе, и третье и очень устал.) Сколько будет у Пети "приятных" дней, когда нужно будет купаться, но не нужно ни ездить в магазин, ни решать задачи? Сколько "скучных", когда совсем не будет никаких дел?
|
|
Сложность: 3+ Классы: 10,11
|
Имеется 1959 положительных чисел
a1,
a2...,
a1959, сумма которых равна 1. Рассматриваются всевозможные комбинации из 1000 чисел, причём комбинации считаются совпадающими, если они отличаются только порядком чисел. Для каждой комбинации рассматривается произведение входящих в неё чисел. Доказать, что сумма всех этих произведений меньше 1.
Страница:
<< 13 14 15 16
17 18 19 >> [Всего задач: 502]