ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



Задача 109656

Темы:   [ Математическая логика (прочее) ]
[ Четность и нечетность ]
[ Кооперативные алгоритмы ]
Сложность: 4-
Классы: 8,9,10

Автор: Фольклор

Переаттестация Совета Мудрецов происходит так: король выстраивает их в колонну по одному и надевает каждому колпак белого или чёрного цветов. Все мудрецы видят цвета всех колпаков впереди стоящих мудрецов, а цвет своего и всех стоящих сзади не видят. Раз в минуту один из мудрецов должен выкрикнуть один из двух цветов (каждый мудрец выкрикивает цвет один раз). После окончания этого процесса король казнит каждого мудреца, выкрикнувшего цвет, отличный от цвета его колпака. Накануне переаттестации все сто членов Совета Мудрецов договорились и придумали, как минимизировать число казнённых. Скольким из них гарантированно удастся избежать казни?

Прислать комментарий     Решение

Задача 109427

Темы:   [ Математическая логика (прочее) ]
[ Ориентированные графы ]
[ Кооперативные алгоритмы ]
Сложность: 4+
Классы: 6,7,8,9

Кощей Бессмертный похитил у царя трёх дочерей. Отправился Иван-царевич их выручать. Приходит он к Кощею, а тот ему и говорит: "Завтра поутру увидишь пять заколдованных девушек. Три из них – царёвы дочери, а ещё две – мои. Для тебя они будут неотличимы, а сами друг дружку различать смогут. Я подойду к одной из них и стану у неё спрашивать про каждую из пятерых: "Это царевна?". Она может отвечать и правду, и неправду, но ей дозволено назвать царевнами ровно двоих (себя тоже можно называть). Потом я так же опрошу каждую из остальных девушек, и они тоже должны будут назвать царевнами ровно двоих. Если после этого угадаешь, кто из них и вправду царевны, отпущу тебя восвояси невредимым. А если ещё и догадаешься, которая царевна старшая, которая средняя, а которая младшая, то и их забирай с собой". Иван может передать царевнам записку, чтобы научить их, кого назвать царевнами. Может ли он независимо от ответов Кощеевых дочерей
  а) вернуться живым?
  б) увезти царевен с собой?

Прислать комментарий     Решение

Задача 109639

Темы:   [ Математическая логика (прочее) ]
[ Деление с остатком ]
[ Кооперативные алгоритмы ]
Сложность: 4+
Классы: 8,9,10,11

Автор: Кноп К.А.

  Переаттестация Совета Мудрецов происходит так: король выстраивает их в колонну по одному и надевает каждому колпак белого, синего или красного цветов. Все мудрецы видят цвета всех колпаков впереди стоящих мудрецов, а цвет своего и всех стоящих сзади не видят. Раз в минуту один из мудрецов должен выкрикнуть один из трёх цветов (каждый мудрец выкрикивает цвет один раз).
  После окончания этого процесса король казнит каждого мудреца, выкрикнувшего цвет, отличный от цвета его колпака.
  Накануне переаттестации все сто членов Совета Мудрецов договорились и придумали, как минимизировать число казненных. Скольким из них гарантированно удастся избежать казни?

Прислать комментарий     Решение

Задача 117003

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Разбиения на пары и группы; биекции ]
[ Принцип Дирихле (прочее) ]
[ Кооперативные алгоритмы ]
Сложность: 3+
Классы: 5,6,7

Два фокусника показывают зрителю такой фокус. У зрителя есть 24 карточки, пронумерованные числами от 1 до 24. Он выбирает из них 13 карточек и передаёт первому фокуснику. Тот возвращает зрителю две из них. Зритель добавляет к этим двум одну из оставшихся у него 11 карточек и, перемешав, передаёт эти три карточки второму фокуснику. Каким образом фокусники могут договориться так, чтобы второй всегда с гарантией мог определить, какую из трёх карточек добавил зритель?

Прислать комментарий     Решение

Задача 32896

Темы:   [ Принцип Дирихле (прочее) ]
[ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Кооперативные алгоритмы ]
Сложность: 4
Классы: 7,8,9,10

Автор: Нетай И.В.

Сто мудрецов хотят проехать на электричке из 12 вагонов от первой до 76-й станции. Они знают, что на первой станции в два вагона электрички сядут два контролёра. После четвёртой станции на каждом перегоне один из контролёров будет переходить в соседний вагон, причём они "ходят" по очереди. Мудрец видит контролёра, только если он в соседнем вагоне или через вагон. На каждой станции каждый мудрец может перебежать по платформе не далее чем на три вагона (например, из 7-го вагона мудрец может добежать до любого вагона с номером от 4 до 10 и сесть в него). Какое максимальное число мудрецов сможет ни разу не оказаться в одном вагоне с контролёром, как бы контролёры ни перемещались? (Никакой информации о контролёрах, кроме указанной в задаче, мудрец не получает. Мудрецы договариваются о стратегии заранее.)

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 >> [Всего задач: 28]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .