ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 160]      



Задача 35593

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
[ Комбинаторная геометрия (прочее) ]
Сложность: 3
Классы: 7,8,9

Какое наименьшее число выстрелов в игре "Морской бой" на доске 7*7 нужно сделать, чтобы наверняка ранить четырехпалубный корабль (четырехпалубный корабль состоит из четырех клеток, расположенных в один ряд)?
Прислать комментарий     Решение


Задача 66545

Темы:   [ Взвешивания ]
[ Оценка + пример ]
Сложность: 3
Классы: 6,7

На витрине ювелирного магазина лежат 15 бриллиантов. Рядом с ними стоят таблички с указанием масс, на которых написано 1, 2, ..., 15 карат. У продавца есть чашечные весы и четыре гирьки массами 1, 2, 4 и 8 карат. Покупателю разрешается только один тип взвешиваний: положить один из бриллиантов на одну чашу весов, а гирьки — на другую и убедиться, что масса на соответствующей табличке указана верно. Однако за каждую взятую гирьку нужно заплатить продавцу 100 монет. Если гирька снимается с весов и в следующем взвешивании не участвует, продавец забирает её. Какую наименьшую сумму придётся заплатить, чтобы проверить массы всех бриллиантов?
Прислать комментарий     Решение


Задача 67419

Темы:   [ Раскраски ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8,9

Шахматную доску 8×8 перекрасили в несколько цветов (каждую клетку – в один цвет). Оказалось, что если две клетки – соседние по диагонали или отстоят друг от друга на ход коня, то они обязательно разного цвета. Какое наименьшее число цветов могло быть использовано?
Прислать комментарий     Решение


Задача 67499

Темы:   [ Комбинаторика (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 7,8,9,10,11

В классе $N$ школьников, среди них образовалось несколько компаний. Общительностью школьника назовём количество людей в наибольшей компании, куда он входит (если ни в одну не входит, то общительность равна $1$). Оказалось, что у всех девочек в классе общительность разная. Каково наибольшее возможное количество девочек в классе?
Прислать комментарий     Решение


Задача 88023

Темы:   [ Теория алгоритмов (прочее) ]
[ Оценка + пример ]
Сложность: 3
Классы: 5,6,7,8

48 кузнецов должны подковать 60 лошадей. Каждый кузнец тратит на одну подкову 5 минут. Какое наименьшее время они должны потратят на работу? (Учтите, лошадь не может стоять на двух ногах.)
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 160]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .