Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 138]      



Задача 116966

Темы:   [ Теория игр (прочее) ]
[ Двоичная система счисления ]
[ Оценка + пример ]
Сложность: 4-
Классы: 6,7,8

Лиса Алиса и кот Базилио вырастили на дереве 20 фальшивых купюр и теперь вписывают в них семизначные номера. На каждой купюре есть 7 пустых клеток для цифр. Базилио называет по одной цифре "1" или "2" (других он не знает), а Алиса вписывает названную цифру в любую свободную клетку любой купюры и показывает результат Базилио. Когда все клетки заполнены, Базилио берет себе как можно больше купюр с разными номерами (из нескольких с одинаковым номером он берет лишь одну), а остаток забирает Алиса. Какое наибольшее количество купюр может получить Базилио, как бы ни действовала Алиса?

Прислать комментарий     Решение

Задача 30839

Темы:   [ Системы счисления ]
[ Взвешивания ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9

Какое наименьшее число гирь необходимо для того, чтобы иметь возможность взвесить любое число граммов от 1 до 100 на чашечных весах, если гири можно класть только на одну чашку весов?

Прислать комментарий     Решение


Задача 64608

Темы:   [ Кооперативные алгоритмы ]
[ Четность и нечетность ]
[ Оценка + пример ]
Сложность: 4
Классы: 8,9,10

По кругу стоят 99 детей, изначально у каждого есть мячик. Ежеминутно каждый ребёнок с мячиком кидает свой мячик одному из двух соседей; при этом, если два мячика попадают к одному ребёнку, то один из этих мячиков теряется безвозвратно. Через какое наименьшее время у детей может остаться только один мячик?

Прислать комментарий     Решение

Задача 65696

Темы:   [ Взвешивания ]
[ Линейные неравенства и системы неравенств ]
[ Оценка + пример ]
Сложность: 4
Классы: 9,10,11

У царя Гиерона есть 11 металлических слитков, неразличимых на вид; царь знает, что их веса (в некотором порядке) равны 1, 2, ..., 11 кг. Ещё у него есть мешок, который порвётся, если в него положить больше 11 кг. Архимед узнал веса всех слитков и хочет доказать Гиерону, что первый слиток имеет
вес 1 кг. За один шаг он может загрузить несколько слитков в мешок и продемонстрировать Гиерону, что мешок не порвался (рвать мешок нельзя!). За какое наименьшее число загрузок мешка Архимед может добиться требуемого?

Прислать комментарий     Решение

Задача 65882

Темы:   [ Теория игр (прочее) ]
[ Целочисленные и целозначные многочлены ]
[ Оценка + пример ]
Сложность: 4
Классы: 9,10,11

Автор: Mudgal A.

Петя и Вася играют в такую игру. Сначала Петя задумывает некоторый многочлен P(x) с целыми коэффициентами. Далее делается несколько ходов. За ход Вася платит Пете рубль и называет любое целое число a по своему выбору, которое он ещё не называл, а Петя в ответ говорит, сколько решений в целых числах имеет уравнение  P(x) = a.  Вася выигрывает, как только Петя два раза (не обязательно подряд) назвал одно и то же число. Какого наименьшего числа рублей хватит Васе, чтобы гарантированно выиграть?

Прислать комментарий     Решение

Страница: << 10 11 12 13 14 15 16 >> [Всего задач: 138]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .