Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 160]
|
|
|
Сложность: 4+ Классы: 10,11
|
Банк обслуживает миллион клиентов, список которых известен Остапу Бендеру.
У каждого есть свой PIN-код из шести цифр, у разных клиентов коды разные. Остап Бендер за один ход может выбрать любого клиента, которого он еще не выбирал, и подсмотреть у него цифры кода на любых N позициях (у разных клиентов он может выбирать разные позиции). Остап хочет узнать код миллионера Корейко. При каком наименьшем N он гарантированно сможет это сделать?
|
|
|
Сложность: 4+ Классы: 10,11
|
Имеется 11 мешков с монетами и весы с двумя чашками и стрелкой, которые
показывают, на какой чашке груз тяжелее и на сколько именно. Известно, что в одном мешке все монеты фальшивые, а в остальных – все монеты настоящие. Все
настоящие монеты имеют одинаковый вес, а все фальшивые – также одинаковый,
но другой вес. За какое наименьшее число взвешиваний можно определить, в каком
мешке лежат фальшивые монеты?
|
|
|
Сложность: 4+ Классы: 8,9,10
|
Каково наименьшее число гирь в наборе, который можно разложить и на 4, и на
5, и на 6 кучек равной массы?
|
|
|
Сложность: 5- Классы: 8,9,10
|
Какое наименьшее число гирь необходимо для того,
чтобы иметь возможность взвесить любое число граммов от 1 до 100
на чашечных весах, если гири можно класть на обе
чашки весов?
|
|
|
Сложность: 5- Классы: 9,10,11
|
У нумизмата есть 100 одинаковых по внешнему виду монет. Он знает, что среди них 30 настоящих и 70 фальшивых монет. Кроме того, он знает, что массы всех настоящих монет одинаковы, а массы всех фальшивых – разные, причём каждая
фальшивая монета тяжелее настоящей; однако точные массы монет неизвестны. Имеются двухчашечные весы без гирь, на которых можно за одно взвешивание сравнить массы двух групп, состоящих из одинакового числа монет. За какое наименьшее количество взвешиваний на этих весах нумизмат сможет гарантированно найти хотя бы одну настоящую монету?
Страница:
<< 17 18 19 20
21 22 23 >> [Всего задач: 160]