ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 9699]      



Задача 57808

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности радиуса R касаются в точке K. На одной из них взята точка A, на другой — точка B, причем $ \angle$AKB = 90o. Докажите, что AB = 2R.
Прислать комментарий     Решение


Задача 57809

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Две окружности радиуса R пересекаются в точках M и N. Пусть A и B — точки пересечения серединного перпендикуляра к отрезку MN с этими окружностями, лежащие по одну сторону от прямой MN. Докажите, что MN2 + AB2 = 4R2.
Прислать комментарий     Решение


Задача 57810

Тема:   [ Параллельный перенос (прочее) ]
Сложность: 2-
Классы: 8,9

Внутри прямоугольника ABCD взята точка M. Докажите, что существует выпуклый четырехугольник с перпендикулярными диагоналями длины AB и BC, стороны которого равны AM, BM, CM, DM.
Прислать комментарий     Решение


Задача 57833

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Докажите, что при центральной симметрии окружность переходит в окружность.
Прислать комментарий     Решение


Задача 57835

Тема:   [ Центральная симметрия (прочее) ]
Сложность: 2-
Классы: 9

Противоположные стороны выпуклого шестиугольника попарно равны и параллельны. Докажите, что он имеет центр симметрии.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 9699]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .