Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1352]
а) Каждые две из шести ЭВМ соединены своим проводом. Укажите, как раскрасить каждый из этих проводов в один из пяти цветов так, чтобы из каждой ЭВМ выходило
пять проводов разного цвета.
б) Каждые две из девяти ЭВМ соединены своим проводом. Можно ли раскрасить каждый из этих проводов в один из восьми цветов так, чтобы из каждой ЭВМ выходило восемь
проводов разного цвета?
Какое наименьшее число точек достаточно отметить внутри выпуклого n-угольника, чтобы внутри каждого треугольника с вершинами в вершинах этого n-угольника содержалась хотя бы одна отмеченная точка?
|
|
Сложность: 3+ Классы: 10,11
|
На какое наименьшее число тетраэдров можно разбить куб?
|
|
Сложность: 3+ Классы: 7,8,9
|
Дан прямоугольник 100×101, разбитый линиями сетки на единичные квадратики. Найдите число отрезков, на которое линии сетки разбивают его диагональ.
|
|
Сложность: 3+ Классы: 9,10
|
На плоскости нарисовано несколько многоугольников, каждые два из которых имеют общую точку.
Докажите, что найдётся прямая, пересекающая все эти многоугольники.
Страница: << 46 47 48 49 50 51 52 >> [Всего задач: 1352]