ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 737]      



Задача 64623

Темы:   [ Теория игр (прочее) ]
[ Признаки делимости на 11 ]
[ Оценка + пример ]
Сложность: 4-
Классы: 8,9,10

Имеются 2013 карточек, на которых написана цифра 1, и 2013 карточек, на которых написана цифра 2. Вася складывает из этих карточек 4026-значное число. За один ход Петя может поменять местами некоторые две карточки и заплатить Васе 1 рубль. Процесс заканчивается, когда у Пети получается число, кратное 11. Какую наибольшую сумму может заработать Вася, если Петя стремится заплатить как можно меньше?

Прислать комментарий     Решение

Задача 65066

Темы:   [ Теория игр (прочее) ]
[ Четность и нечетность ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9

На столе лежит 10 кучек с 1, 2, 3, 4, 5, 6, 7, 8, 9 и 10 орехами. Двое играющих берут по очереди по одному ореху. Игра заканчивается, когда на столе останется три ореха. Если это – три кучки по одному ореху, выигрывает тот, кто ходил вторым, иначе – его соперник. Кто из игроков может выиграть, как бы не играл соперник?

Прислать комментарий     Решение

Задача 65077

Темы:   [ Теория алгоритмов (прочее) ]
[ Теория графов (прочее) ]
Сложность: 4-
Классы: 8,9

В Швамбрании некоторые города связаны двусторонними беспосадочными авиарейсами. Рейсы разделены между тремя авиакомпаниями, причём если какая-то авиакомпания обслуживает линию между городами А и Б, то самолёты других компаний между этими городами не летают. Известно, что из каждого города летают самолёты всех трёх компаний. Докажите, что можно, вылетев из некоторого города, вернуться в него, воспользовавшись по пути рейсами всех трёх компаний и не побывав ни в одном из промежуточных городов дважды.

Прислать комментарий     Решение

Задача 65137

Темы:   [ Симметричная стратегия ]
[ Четность и нечетность ]
Сложность: 4-
Классы: 6,7

Автор: Фольклор

Придя в школу, Коля и Алиса обнаружили на доске надпись: "ГОРОДСКАЯ УСТНАЯ ОЛИМПИАДА". Они договорились сыграть в следующую игру: за один ход в этой надписи разрешается стереть произвольное количество одинаковых букв, а выигрывает тот, кто стирает последнюю букву. Первым ходил Коля и стёр последнюю букву "А". Как надо играть Алисе, чтобы обеспечить себе выигрыш?

Прислать комментарий     Решение

Задача 65386

Темы:   [ Теория алгоритмов (прочее) ]
[ Доказательство от противного ]
[ Оценка + пример ]
Сложность: 4-
Классы: 7,8,9

На полоске 1×N на 25 левых клетках стоят 25 шашек. Шашка может ходить на соседнюю справа свободную клетку или перепрыгивать через соседнюю справа шашку на следующую за ней клетку (если эта клетка свободна), движение влево не разрешается. При каком наименьшем N все шашки можно поставить без пробелов в обратном порядке?

Прислать комментарий     Решение

Страница: << 55 56 57 58 59 60 61 >> [Всего задач: 737]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .