Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 416]
|
|
|
Сложность: 5- Классы: 10,11
|
В каждой клетке таблицы 1000×1000 стоит ноль или единица. Докажите, что можно либо вычеркнуть 990 строк так, что каждом столбце будет хотя бы одна невычеркнутая единица, либо вычеркнуть 990 столбцов так, что в каждой строке будет хотя бы один невычеркнутый ноль.
|
|
|
Сложность: 5- Классы: 10,11
|
На координатной плоскости нарисовано n парабол, являющихся графиками квадратных трёхчленов; никакие две из них не касаются. Они делят плоскость на несколько областей, одна из которых расположена над всеми параболами. Докажите, что у границы этой области не более 2(n – 1) углов
(то есть точек пересечения пары парабол).
|
|
|
Сложность: 5 Классы: 10,11
|
На прямоугольном столе лежат равные картонные квадраты k
различных цветов со сторонами, параллельными сторонам стола. Если рассмотреть
любые k квадратов различных цветов, то какие-нибудь два из них
можно прибить к столу одним гвоздем.
Докажите, что все квадраты некоторого цвета
можно прибить к столу 2k-2 гвоздями.
|
|
|
Сложность: 5 Классы: 9,10,11
|
В некотором государстве ценятся золотой и платиновый песок. Золото можно менять на платину, а платину на золото по курсу, который определяется натуральными числами g и p так: x граммов золотого песка равноценны y граммам платинового, если xp = yg (числа x и y могут быть нецелыми). Сейчас у банкира есть по килограмму золотого и платинового песка, а g = p = 1001. Государство обещает каждый день уменьшать одно из чисел g и p на единицу, так что через 2000 дней они оба станут единицами; но последовательность уменьшений неизвестна. Может ли банкир каждый день менять песок так, чтобы в конце гарантированно получить хотя бы по 2 кг каждого песка?
|
|
|
Сложность: 5 Классы: 8,9,10,11
|
В некотором государстве 32 города, каждые два из которых соединены дорогой с односторонним движением. Министр путей сообщения, тайный злодей, решил так организовать движение, что, покинув любой город, в него нельзя будет вернуться. Для этого он каждый день, начиная с 1 июня 2021 года, может менять направление движения на одной из дорог. Докажите, что он сможет добиться своего к 2022 году (то есть за 214 дней).
Страница:
<< 39 40 41 42
43 44 45 >> [Всего задач: 416]