ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 290]      



Задача 111811

Темы:   [ Числовые таблицы и их свойства ]
[ Процессы и операции ]
[ Четность и нечетность ]
[ Инварианты ]
Сложность: 4-
Классы: 8,9,10

В клетках квадрата 5×5 изначально были записаны нули. Каждую минуту Вася выбирал две клетки с общей стороной и либо прибавлял по единице к числам в них, либо вычитал из них по единице. Через некоторое время оказалось, что суммы чисел во всех строках и столбцах равны. Докажите, что это произошло через чётное число минут.

Прислать комментарий     Решение

Задача 60522

Темы:   [ НОД и НОК. Взаимная простота ]
[ Инварианты и полуинварианты (прочее) ]
[ Процессы и операции ]
[ Полуинварианты ]
Сложность: 4
Классы: 9,10,11

На доске написано n натуральных чисел. За одну операцию вместо двух чисел, не делящих друг друга, можно написать их наибольший общий делитель и их наименьшее общее кратное.
  а) Докажите, что можно провести только конечное число операций.
  б) Финальный результат независимо от порядка действий будет одним и тем же. Например:
    (4, 6, 9) → (2, 12, 9) → (2, 3, 36) → (1, 6, 36),
    (4, 6, 9) → (4, 3, 18) → (1, 12, 18) → (1, 6, 36).

Прислать комментарий     Решение

Задача 107782

Темы:   [ Средние пропорциональные в прямоугольном треугольнике ]
[ Разные задачи на разрезания ]
[ Принцип крайнего (прочее) ]
[ Инварианты ]
Сложность: 4
Классы: 8,9,10

Первоначально даны четыре одинаковых прямоугольных треугольника. Каждым ходом один из имеющихся треугольников разрезается по высоте (выходящей из прямого угла) на два других. Докажите, что после любого количества ходов среди треугольников найдутся два одинаковых.

Прислать комментарий     Решение

Задача 107860

Темы:   [ Признаки делимости на 3 и 9 ]
[ Десятичная система счисления ]
[ Признаки делимости (прочее) ]
[ Полуинварианты ]
Сложность: 4
Классы: 8,9,10

Существует ли натуральное число, делящееся на 1998, сумма цифр которого меньше 27?

Прислать комментарий     Решение

Задача 109742

Темы:   [ Числовые таблицы и их свойства ]
[ Вспомогательные проекции ]
[ Процессы и операции ]
[ Инварианты ]
Сложность: 4+
Классы: 9,10,11

В магическом квадрате n×n, составленном из чисел 1, 2, ..., n², центры каждых двух клеток соединили вектором в направлении от большего числа к меньшему. Докажите, что сумма всех полученных векторов равна нулю. (Магическим называется клетчатый квадрат, в клетках которого записаны числа так, что суммы чисел во всех его строках и столбцах равны.)

Прислать комментарий     Решение

Страница: << 52 53 54 55 56 57 58 >> [Всего задач: 290]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .