ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 288]      



Задача 104027

Тема:   [ Инварианты ]
Сложность: 3
Классы: 7,8,9

В вершинах шестиугольника записаны числа 12, 1, 10, 6, 8, 3 (в таком порядке). За один ход разрешено выбрать две соседние вершины и к числам, стоящим в данных вершинах, одновременно прибавить единицу или одновременно вычесть из них единицу. Можно ли получить в итоге шесть чисел в таком порядке:
а) 14, 6, 13, 4, 5, 2; б) 6, 17, 14, 3, 15, 2?
Прислать комментарий     Решение


Задача 30751

Темы:   [ Инварианты ]
[ Четность и нечетность ]
Сложность: 3+
Классы: 7,8,9

Круг разделён на шесть секторов, в каждом из которых стоит фишка. Разрешается за один ход сдвинуть любые две фишки в соседние с ними сектора.
Можно ли с помощью таких операций собрать все фишки в одном секторе?

Прислать комментарий     Решение

Задача 30753

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 7,8

На доске выписаны числа 1, 2, ..., 20. Разрешается стереть любые два числа a и b и заменить их на число  ab + a + b.
Какое число может остаться на доске после 19 таких операций?

Прислать комментарий     Решение

Задача 30757

Темы:   [ Инварианты ]
[ Четность и нечетность ]
[ Таблицы и турниры (прочее) ]
Сложность: 3+
Классы: 7,8,9

В таблице 8×8 все четыре угловые клетки закрашены чёрным цветом, все остальные – белым. Докажите, что с помощью перекрашивания строк и столбцов нельзя добиться того, чтобы все клетки стали белыми. Под перекрашиванием строки или столбца понимается изменение цвета всех клеток в строке или столбце.

Прислать комментарий     Решение

Задача 30766

Тема:   [ Инварианты ]
Сложность: 3+
Классы: 7,8

В странах Диллии и Даллии денежными единицами являются диллеры и даллеры соответственно, причем в Диллии диллер меняется на 10 даллеров, а в Даллии даллер меняется на 10 диллеров. Начинающий финансист имеет 1 диллер и может свободно перезжать из одной страны в другую и менять свои деньги в обеих странах. Докажите, что количество даллеров у него никогда не сравняется с количеством диллеров.

Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 288]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .