|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Материалы по этой теме:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи а) На доске выписано 100 различных чисел. Докажите, что среди них можно выбрать восемь чисел так, чтобы их среднее арифметическое не представлялось в виде среднего арифметического никаких девяти из выписанных на доске чисел. б) На доске выписано 100 целых чисел. Известно, что для любых восьми из этих чисел найдутся такие девять из этих чисел, что среднее арифметическое этих восьми чисел равно среднему арифметическому этих девяти чисел. Докажите, что все числа равны. |
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 368]
В равенстве (ayb)c = – 64y6 замените a, b и c целыми числами, отличными от 1, так, чтобы получилось тождество.
Найдите все натуральные решения уравнения 2n – 1/n5 = 3 – 2/n.
Решить в целых числах уравнение (2x + y)(5x + 3y) = 7.
Из квадратного листа бумаги в клетку, содержащего целое число клеток, вырезали квадрат, содержащий целое число клеток так, что осталось 124 клетки. Сколько клеток мог содержать первоначальный лист бумаги?
Найти все целые натуральные решения уравнения (n + 2)! – (n + 1)! – n! = n2 + n4.
Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 368] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|