|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Докажите, что любой прямоугольник можно разрезать на части и сложить из них прямоугольник со стороной 1. Найдите значение выражения log10250-log102,5 Расставить в таблице 4×4 16 чисел так, чтобы сумма чисел по любой вертикали, горизонтали и диагонали равнялась нулю. (Таблица имеет 14 диагоналей, включая все малые, состоящие из трёх, двух и одной клеток. Хотя бы одно из чисел должно быть отлично от нуля.) На каждой клетке шахматной доски стоит шашка, с одной стороны белая, с другой черная. За один ход можно выбрать любую шашку и перевернуть все шашки, стоящие с выбранной на одной вертикали, и все шашки, стоящие с ней на одной горизонтали. Три окружности проходят через точку X. A, B, C – точки их пересечения, отличные от X. A' – вторая точка пересечения прямой AX и описанной окружности треугольника BCX. Точки B' и C' определяются аналогично. Докажите, что треугольники ABC', AB'C и A'BC подобны. |
Страница: << 1 2 3 4 5 >> [Всего задач: 21]
Можно ли построить три дома, вырыть три колодца и соединить тропинками каждый дом с каждым колодцем так, чтобы тропинки не пересекались?
Докажите, что граф, имеющий 10 вершин, степень каждой из которых равна 5, – не плоский.
Докажите, что в плоском графе есть вершина, степень которой не превосходит 5.
Каждое ребро полного графа с 11 вершинами покрашено в один из двух цветов: красный или синий.
Семиугольник разбит на выпуклые пяти- и шестиугольники, причём так, что каждая его вершина является вершиной по крайней мере двух многоугольников разбиения. Докажите, что число пятиугольников разбиения не меньше 13.
Страница: << 1 2 3 4 5 >> [Всего задач: 21] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|