Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 50]
|
|
Сложность: 4 Классы: 8,9,10,11
|
Дан набор из нескольких гирек, на каждой написана масса. Известно, что набор масс и набор надписей одинаковы, но возможно некоторые надписи перепутаны. Весы представляют из себя горизонтальный отрезок, закреплённый за середину. При взвешивании гирьки прикрепляются в произвольные точки отрезка, после чего весы остаются в равновесии либо отклоняются в ту или иную сторону. Всегда ли удастся за одно взвешивание проверить, все надписи верны или нет? (Весы будут в равновесии, если сумма моментов гирь справа от середины равна сумме моментов гирь слева; иначе отклонятся в сторону, где сумма больше. Моментом гири называется произведение ms массы гири m на расстояние s он нее до середины отрезка.)
|
|
Сложность: 4 Классы: 9,10,11
|
Доказать, что для любых чисел a1, ..., a1987 и положительных чисел b1,..., b1987 справедливо неравенство
|
|
Сложность: 4 Классы: 8,9,10,11
|
Пусть P(x) – квадратный трёхчлен с неотрицательными
коэффициентами.
Докажите, что для любых действительных чисел x и y
справедливо неравенство (P(xy))² ≤ P(x²)P(y²).
[Неравенство Юнга]
|
|
Сложность: 4+ Классы: 9,10,11
|
Даны рациональные положительные p, q, причём 1/p + 1/q = 1. Докажите, что для положительных a и b выполняется неравенство ab ≤ ap/p + bq/q.
|
|
Сложность: 2+ Классы: 7,8,9
|
Под какой процент выгоднее положить деньги в банк на год: 6% в год или 0,5% в месяц?
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 50]