ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



Задача 61385

Темы:   [ Классические неравенства (прочее) ]
[ Перестановки и подстановки (прочее) ]
[ Инварианты и полуинварианты ]
Сложность: 3
Классы: 8,9,10,11

Докажите, что если   a1a2 ≥ ... ≥ an,   b1b2 ≥ ... ≥ bn,   то наибольшая из сумм вида   a1bk1 + a2bk2 + ... + anbkn     (k1, k2, ..., kn – перестановка чисел
1, 2, ..., n),  это сумма   a1b1 + a2b2 + ... + anbn,   а наименьшая – сумма   a1bn + a2bn–1 + ... + anb1.

Прислать комментарий     Решение

Задача 61076

Темы:   [ Классические неравенства (прочее) ]
[ Неравенство треугольника (прочее) ]
Сложность: 3+
Классы: 9,10,11

Докажите, что при любых вещественных aj, bj  (1 ≤ jn)  выполняется неравенство

Прислать комментарий     Решение

Задача 61386

 [Неравенство Чебышёва]
Темы:   [ Классические неравенства (прочее) ]
[ Разложение на множители ]
Сложность: 3+
Классы: 8,9,10,11

Докажите неравенство Чебышёва     при условии, что   a1a2 ≥ ... ≥ an   и
b1b2 ≥ ... ≥ bn.

Прислать комментарий     Решение

Задача 66293

Тема:   [ Классические неравенства (прочее) ]
Сложность: 3+
Классы: 8,9

Положительные числа x, y, z таковы, что  xyz = 1.  Докажите, что  

Прислать комментарий     Решение

Задача 61402

Тема:   [ Классические неравенства (прочее) ]
Сложность: 4-
Классы: 9,10,11

Выведите из неравенства задачи 61401

  а) неравенство Коши-Буняковского:  

  б) неравенство между средним арифметическим и средним квадратичным:   ;

  в) неравенство между средним арифметическим и средним гармоническим:   .
  Значения переменных считаются положительными.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 50]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .