ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 603]      



Задача 86488

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Биссектриса угла ]
Сложность: 2+
Классы: 7,8

Через вершины А и С треугольника АВС проведены прямые, перпендикулярные биссектрисе угла АВС. Они пересекают прямые СВ и ВА в точках К и М соответственно. Найдите длину АВ, если  ВМ = 8 см,  KC = 1 см  и  АВ > ВС.

Прислать комментарий     Решение

Задача 86515

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанный угол, опирающийся на диаметр ]
Сложность: 2+
Классы: 8,9

В выпуклом четырёхугольнике ABCD точки E, F и G – середины сторон AB, BC и AD соответственно, причём  GEABGFBC.  Найдите угол ACD.

Прислать комментарий     Решение

Задача 108608

Тема:   [ Признаки и свойства равнобедренного треугольника. ]
Сложность: 2+
Классы: 8,9

Медиана AD, высота BE и биссектриса CF треугольника ABC пересекаются в точке O. Известно, что  BO = CO.
Докажите, что треугольник ABC равносторонний.

Прислать комментарий     Решение

Задача 116155

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Признаки равенства прямоугольных треугольников ]
[ Свойства биссектрис, конкуррентность ]
Сложность: 2+
Классы: 8,9

B равнобедренном треугольнике ABС на боковой стороне отмечена точка M так, что отрезок равен высоте треугольника, проведённой к этой стороне, а на боковой стороне AB отмечена точка K так, что угол KMС – прямой. Hайдите угол ACK.

Прислать комментарий     Решение

Задача 116732

Темы:   [ Признаки и свойства равнобедренного треугольника. ]
[ Вписанные и описанные окружности ]
Сложность: 2+
Классы: 7,8,9

Автор: Фольклор

У двух равнобедренных треугольников равны основания и радиусы описанных окружностей. Обязательно ли эти треугольники равны?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 603]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .