|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Подтемы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Дан неравнобедренный треугольник ABC. Точка O – центр его описанной окружности, а точка K – центр описанной окружности ω треугольника BCO. Высота треугольника ABC, проведенная из точки A, пересекает окружность ω в точке P. Прямая PK пересекает описанную окружность треугольника ABC в точках E и F. Докажите, что один из отрезков EP и FP равен отрезку PA. |
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1359]
Гипотенуза прямоугольного треугольника служит стороной квадрата, расположенного вне треугольника.
В равнобедренном треугольнике высота, проведённая к основанию, делится точкой пересечения высот пополам. Найдите углы этого треугольника.
Высота треугольника ABC, опущенная на сторону BC, равна h,
В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает продолжение стороны BC в точке M, причём MC : MB = 1 : 5. Перпендикуляр, проходящий через середину стороны BC, пересекает сторону AC в точке N, причём AN : NC = 1 : 2 . Найдите углы треугольника ABC.
В треугольнике ABC перпендикуляр, проходящий через середину стороны AB, пересекает сторону AC в точке M, причём MA/MC = 3. Перпендикуляр, проходящий через середину стороны AC, пересекает сторону AB в точке N, причём AN/BN = 2. Найдите углы треугольника ABC.
Страница: << 27 28 29 30 31 32 33 >> [Всего задач: 1359] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|