Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 180]
|
|
Сложность: 3+ Классы: 8,9,10
|
Вокруг равнобедренного треугольника ABC с основанием AB описана окружность и в точке B проведена касательная к ней. Из точки C проведён перпендикуляр CD к этой касательной, также проведены высоты AE и BF. Докажите, что точки D, E, F лежат на одной прямой.
|
|
Сложность: 3+ Классы: 9,10
|
СН – высота остроугольного треугольника АВС, О – центр его описанной окружности. Точка Т – проекция вершины С на прямую АО.
В каком отношении прямая ТН делит сторону ВС?
|
|
Сложность: 3+ Классы: 7,8,9
|
В треугольнике ABC высота AH делит медиану BM пополам.
Докажите, что из медиан треугольника ABM можно составить прямоугольный треугольник.
|
|
Сложность: 3+ Классы: 9,10,11
|
На сторонах единичного квадрата как на гипотенузах построены во внешнюю сторону прямоугольные треугольники. Пусть A, B, C и D – вершины их прямых углов, а O1, O2,
O3 и O4 – центры вписанных окружностей этих треугольников. Докажите, что
а) площадь четырёхугольника ABCD не превосходит 2;
б) площадь четырёхугольника O1O2O3O4 не превосходит 1.
Через точку Y на стороне AB равностороннего треугольника ABC проведена прямая, пересекающая сторону BC в точке Z, а продолжение стороны CA за точку A – в точке X. Известно, что XY = YZ и AY = BZ. Докажите, что прямые XZ и BC перпендикулярны.
Страница:
<< 30 31 32 33
34 35 36 >> [Всего задач: 180]