ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 8 задач
Версия для печати
Убрать все задачи

За круглым столом сидят 100 представителей 25 стран, по 4 представителя от каждой. Докажите, что их можно разбить на 4 группы таким образом, что в каждой группе будет по одному представителю от каждой страны, и никакие двое из одной группы не сидят за столом рядом.

Вниз   Решение


Точка A расположена на расстоянии 50 см от центра круга радиуса 1 см. Разрешается точку A отразить симметрично относительно произвольной прямой, пересекающей круг; полученную точку отразить симметрично относительно любой прямой, пересекающей круг, и т.д. Доказать, что: а) за 25 отражений точку A можно переместить внутрь круга; б) за 24 отражения этого сделать нельзя.

ВверхВниз   Решение


Известно, что  f(x), g(x) и h(x) – квадратные трёхчлены. Может ли уравнение  f(g(h(x)))  = 0 иметь корни 1, 2, 3, 4, 5, 6, 7 и 8?

ВверхВниз   Решение


Решите уравнение   1 + 1 : (1 + 1 : (1 + 1 : (x + 2016))) = (1,2)².

ВверхВниз   Решение


На доске записано произведение a1a2... a100, где a1, ..., a100 – натуральные числа. Рассмотрим 99 выражений, каждое из которых получается заменой одного из знаков умножения на знак сложения. Известно, что значения ровно 32 из этих выражений чётные. Какое наибольшее количество чётных чисел среди a1, a2, ..., a100 могло быть?

ВверхВниз   Решение


Детали полотна игрушечной железной дороги имеют форму четверти окружности радиуса R. Докажите, что последовательно присоединяя их концами так, чтобы они плавно переходили друг в друга, нельзя составить путь, у которого начало совпадает с концом, а первое и последнее звенья образуют тупик, изображенный на рис.


ВверхВниз   Решение


Найти множество центров тяжести всех остроугольных треугольников, вписанных в данную окружность.

ВверхВниз   Решение


а) Доказать, что сумма цифр числа K не более чем в 8 раз превосходит сумму цифр числа 8K.
б) Для каких натуральных k существует такое положительное число ck, что  ck  для всех натуральных N? Найдите наибольшее подходящее значение ck.

Вверх   Решение

Задачи

Страница: << 1 2 3 >> [Всего задач: 15]      



Задача 56873

Тема:   [ Целочисленные треугольники ]
Сложность: 5
Классы: 8,9

Радиус вписанной окружности треугольника равен 1, а длины его сторон — целые числа. Докажите, что эти числа равны 3, 4, 5.
Прислать комментарий     Решение


Задача 56874

Тема:   [ Целочисленные треугольники ]
Сложность: 5
Классы: 8,9

Приведите пример вписанного четырехугольника с попарно различными целочисленными длинами сторон, у которого длины диагоналей, площадь и радиус описанной окружности — целые числа (Брахмагупта).
Прислать комментарий     Решение


Задача 56875

Тема:   [ Целочисленные треугольники ]
Сложность: 5
Классы: 8,9

а) Укажите два прямоугольных треугольника, из которых можно сложить треугольник, длины сторон и площадь которого — целые числа.
б) Докажите, что если площадь треугольника — целое число, а длины сторон — последовательные натуральные числа, то этот треугольник можно сложить из двух прямоугольных треугольников с целочисленными сторонами.
Прислать комментарий     Решение


Задача 56876

Темы:   [ Целочисленные треугольники ]
[ Рациональные и иррациональные числа ]
Сложность: 6
Классы: 8,9

а) В треугольнике ABC, длины сторон которого рациональные числа, проведена высота BB1. Докажите, что длины отрезков AB1 и CB1 — рациональные числа.
б) Длины сторон и диагоналей выпуклого четырехугольника — рациональные числа. Докажите, что диагонали разрезают его на четыре треугольника, длины сторон которых — рациональные числа.
Прислать комментарий     Решение


Задача 116446

Темы:   [ Неравенство треугольника (прочее) ]
[ Целочисленные треугольники ]
Сложность: 2+
Классы: 8,9,10

Автор: Фольклор

Какое наименьшее значение может принимать периметр неравнобедренного треугольника с целыми длинами сторон?

Прислать комментарий     Решение

Страница: << 1 2 3 >> [Всего задач: 15]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .